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SECTION A

Answer all questions.






(10 x 2 = 20)

1. Define level and power of a test.

2. Let X be a random variable with pdf 
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Obtain the Most Powerful Test of size 
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for testing H0: θ = 1 Vs H1: θ = 2.

3. Give the general form of (k+1) parameter exponential family of distributions.

4. Define Uniformly Most Powerful Test.

5. Let
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. Consider the test function
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for testing H0: θ = 0.2 Vs H1: θ > 0.2.Obtain the value of power function at 

θ = 0.4. 

6. What are the circumstances under which Locally Most Powerful test is used?

7. What is meant by shortest length confidence interval?

8. Define maximal invariant function.

9. What is meant by nuisance parameter? Give an example.

10. Define Likelihood Ratio Test.

SECTION B

Answer any FIVE questions.
(5 x 8 = 40)

11. Let 
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 denote a random sample from
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Derive a Most Powerful test of  level 0.05 for testing 
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. Also obtain the       cut-off point.

12. Show that the family of densities
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 possesses MLR property.

13. Let
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. Show that UMP test of 
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 does not exist.

14. For (k+1) parameter exponential family of densities, derive an unconditional UMPUT of level
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 for testing 
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15. State and prove the sufficient part of Generalized Neyman-Pearson lemma.

16. Show that any test having Neyman structure is similar. Also show that the converse is true under certain assumptions (to be stated).

17. Derive the Locally Most Powerful test for testing 
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 are known pdf’s.

18. Find maximal invariant function under the group of i.) Location transformations and ii.) Scale transformations.

SECTION C

Answer any TWO questions.





 (2 x 20 = 40)
19. a.) Derive a UMP test of level 
[image: image23.wmf]a

 for testing 
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 that possess MLR in T(x). Show that the power function of the above testing problem increases in 
[image: image27.wmf]q


b.) Show that any UMP test is always UMPUT.


          (16+4)

20. Consider a one parameter exponential family with density
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 is strictly increasing in
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. Derive a UMP test of level 
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 for testing 
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21. Let X and Y be independent Binomial variables with parameters 
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 respectively, where m and n are assumed to be known. Derive a conditional UMPUT of size 
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 for testing 
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22. Let 
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respectively. Derive the Likelihood Ratio Test for testing 
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